Repair of articular cartilage defects by tissue-engineered cartilage constructed with adipose-derived stem cells and acellular cartilaginous matrix in rabbits.
نویسندگان
چکیده
After injury, inflammation, or degeneration, articular cartilage has limited self-repair ability. We aimed to explore the feasibility of repair of articular cartilage defects with tissue-engineered cartilage constructed by acellular cartilage matrices (ACMs) seeded with adipose-derived stem cells (ADSCs). The ADSCs were isolated from 3-month-old New Zealand albino rabbit by using collagenase and cultured and amplified in vitro. Fresh cartilage isolated from adult New Zealand albino rabbit were freeze-dried for 12 h and treated with Triton X-100, DNase, and RNase to obtain ACMs. ADSCs were seeded in the acellular cartilaginous matrix at 2x10(7)/mL, and cultured in chondrogenic differentiation medium for 2 weeks to construct tissue-engineered cartilage. Twenty-four New Zealand white rabbits were randomly divided into A, B, and C groups. Engineered cartilage was transplanted into cartilage defect position of rabbits in group A, group B obtained ACMs, and group C did not receive any transplants. The rabbits were sacrificed in week 12. The restored tissue was evaluated using macroscopy, histology, immunohistochemistry, and transmission electron microscopy (TEM). In the tissue-engineered cartilage group (group A), articular cartilage defects of the rabbits were filled with chondrocyte-like tissue with smooth surface. Immunohistochemistry showed type II-collagen expression and Alcian blue staining was positive. TEM showed chondrocytes in the recesses, with plenty of secretary matrix particles. In the scaffold group (group B), the defect was filled with fibrous tissue. No repaired tissue was found in the blank group (group C). Tissue-engineered cartilage using ACM seeded with ADSCs can help repair articular cartilage defects in rabbits.
منابع مشابه
Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold
Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...
متن کاملA Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering
Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...
متن کاملPartial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملAdvances in adipose-derived stem cells and cartilage regeneration: review article
The cartilage is a connective tissue that, due to the strength of its extracellular matrix, allows the tissue to tolerate mechanical stress without undergoing permanent deformation. It is responsible for the support of soft tissues and due to its smooth surface and elasticity, gives the joints the ability to slip and bend. excessive weight, excessive activity, or trauma can all cause cartilage ...
متن کاملDesigning of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold
Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2014